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Abstract 

Estimating the fundamental frequency and harmonic parameters is basic for signal modelling in a power supply 
system. Differing from the existing parameter estimation algorithms either in power quality monitoring or in 
harmonic compensation, the proposed algorithm enables a simultaneous estimation of the fundamental
frequency, the amplitudes and phases of harmonic waves. A pure sinusoid is obtained from an input multi-
harmonic input signal by finite-impulse-response (FIR) comb filters. Proposed algorithm is based on the use of 
partial derivatives of the processed signal and the weighted estimation procedure to estimate the fundamental
frequency, the amplitude and the phase of a multi-sinusoidal signal. The proposed algorithm can be applied in
signal reconstruction, spectral estimation, system identification, as well as in other important signal processing
problems. The simulation results verify the effectiveness of the proposed algorithm. 
 
Keywords: band-limited signals, fundamental frequency and Fourier coefficient estimation, signal
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1. Introduction 
 

Literature on electrical parameter measurement techniques for power system applications 
is both voluminous and generally accessible. The magnitude estimation of a power system 
signal has been an important area of research for the past few decades, and the methods have 
almost been standardized for the signals with known frequencies. The electrical parameter 
measurement of a fixed-frequency signal is a straightforward task. However, if the frequency 
is not known a priori, it becomes a very difficult task to accurately measure the amplitude and 
phase. Various numerical algorithms for power measurements are sensitive to frequency 
variations. 

In an electric power system, an increase or decrease in frequency occurs due to 
disturbances in the power system. Large blocks of load are connected or disconnected, or 
large sources of generation go offline. Frequency variations are much more likely to occur for 
the loads that are supplied by a generator isolated from the utility systems (islands). Any 
frequency deviation from the nominal value of 50 or 60 Hz can substantially degrade the 
performance of the measurement devices that operate based on assumption of constant 
frequency. 

Spectrum estimation of discretely sampled processes is usually based on procedure 
employing the fast Fourier transform (FFT). The FFT is a computationally efficient algorithm 
for computing discrete Fourier transformation (DFT). However, although the FFT is quite 
efficient under fixed-frequency conditions, it does not offer very good performance unless the 
sampling frequency and the fundamental frequency of the signal are synchronized. It is well 
known that FFT loses its accuracy under desynchronization and nonstationary conditions, 
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whereas the fundamental/harmonic frequency may vary over time. These errors appear due to 
the orthogonal finite-impulse-response (FIR) filters having different magnitude gains at 
frequencies other that the nominal power frequency [1] and because the frequencies of 
harmonics are equal to zero of the frequency response of the FIR filter with a rectangular 
window, which is used in the DFT algorithms. These performance limitations are particularly 
troublesome when analyzing short data records, which frequently occur in practice, because 
many measured processes are brief. DFT may be computed efficiently in the sliding mode, by 
SDFT algorithms. After initialization a single DFT bin is computed with a few multiplications 
and additions and the complexity does not depend on the signal length, [2-3]. 

In a real case the coherent frequency relationships between all the frequencies contained in 
the input signal and the sampling frequency are not met, leading to the well-known leakage 
phenomena. The way used to reduce this problem is called ‘windowing’ and a frequency-
domain method often used for estimating the multifrequency signal parameters under 
noncoherent sampling is the Interpolated DFT (IpDFT) method [4-5]. This method provides 
very accurate parameter estimates, but requires a considerable amount of computation. 

To better satisfy the periodicity requirement of the FFT process, time-weighting functions, 
called windows and/or correction interpolation algorithms are used [6]. In this way, however, 
the error can only be reduced but not removed. If a window is not used, then the 
synchronization to the grid fundamental frequency is mandatory. Unfortunately, the phase-
locked loop (PLL), as a traditional synchronization method, has a rather long response time, 
particularly in the presence of transient phenomena on the input signal, such as power supply 
frequency variations or phase jumps. 

In addition to the disadvantages related to the synchronization of the sampling frequency 
with the frequency of the signal, the FFT has disadvantages caused by frame implementation. 
Thus, the FFT processes entire frames of data and cannot provide in-between data. If the 
calculation is done in a sliding mode, i.e. the FFT is repeatedly applied to a frame of N 
elements computing of the last N-1-shifted elements of the previous frame and a single new 
element, then FFT requires intensive computational effort, which complicates its integration 
in low-cost microcontrollers 

A Newton-type recursive numerical algorithm that also considers the system frequency as 
an unknown signal model parameter to be estimated has been proposed in [7]. It 
simultaneously estimates the frequency and spectra of the power system. This approach solves 
the problem of sensitivity to frequency variations. By the introduction of power frequency in 
the vector of unknown model parameters, the signal model becomes nonlinear, so strategies of 
nonlinear estimation are used. The recursive algorithm form is improved with a strategy of 
sequential tuning of the forgetting factor. By this, the proposed algorithm convergence and 
accuracy are significantly improved.  

If the generator and the acquisition device are not synchronized, then the FIR filter with 
optimized frequency responses, which do not need synchronization, can be designed by the 
least-square (LS) technique [8]. In this case, the computational load is higher than in the 
synchronized case. The LS design method for large-order filters requires a considerable 
amount of computation that may not be completed within the available time, that is one 
sampling interval. Thus, these filters cannot efficiently be online adapted during frequency 
deviations. If we want to avoid the burden of these calculations, than a proper tabulation of 
the weights can be applied. 

In this paper, a new technique for simultaneous estimation of local system frequency and 
amplitude and phase with wide frequency variation range is presented. What is needed for a 
realization of the proposed algorithm are only the value of sample of processed signal and its 
first and second derivation values. The framework consists of an oversampling analog-to-
digital conversion unit with a dithering process, a finite-impulse-response (FIR) comb filter 
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and a higher order finite-impulse-response (FIR) digital differentiator followed by a 
decimator. The proposed method can be applied in the case when the fundamental frequency 
signal (input signal) has a range limited to the bandwidth of the first harmonic component. 
Differing from the existing parameter estimation algorithms, the proposed algorithm is able to 
estimate the signal parameters simultaneously, supposing the time-varying frequency. The 
simulation results verify the effectiveness of the proposed algorithm. The proposed method 
can be applied in precise measurements of important electric quantities such as RMS 
measurements of periodic signals, power and energy 

Unlike the IEEE standard that was analysed in [9], the algorithm proposed in this paper is 
significantly more stable and free of the propagation error. Namely, when using the procedure 
prescribed by the standard, the amplitude errors of the fundamental will propagate through the 
method since the amplitudes are used to reconstruct the detected sine wave and obtain the 
results before they are used to determine the next harmonic parameters. Overall, the frequency 
and amplitude errors from the first calculation are propagated to the higher harmonics and the 
calculation of the nth harmonic will invariably be contaminated by the errors of the phases 
and amplitudes from previous steps.  

 
2. Proposed method of processing 
 

Let us assume that the input signal of the fundamental frequency f is band-limited to the 
first M harmonic components. This form of continuous signal with a complex harmonic 
content can be represented as a sum of the Fourier components as follows: 

 

 ( ) ( )∑ +=
=

M

k
kk tkXtx

1
sin ϕω , (1) 

 
where ω = 2πf represents the angular frequency in radians per second, Xk is the amplitude 
value of the kth harmonic, ϕk, is the phase angle of the kth harmonic in radians, M is the 
number of harmonic components in input signal, and t is time in seconds. 

To obtain a single sinusoidal signal, the frequency response of the filters must have nulls at 
the harmonic frequencies that are expected to be present in the signal and a unity gain at the 
fundamental frequency. If the frequency is not constant, then filter parameters have to be 
adapted online during frequency estimation. To provide satisfactory measurement, it becomes 
necessary to track the system frequency and apply certain corrections to the measuring 
algorithms and input filters. The block diagram of the adaptive algorithm that applies FIR 
comb filters is given in Fig. 1. 

 

 
 

Fig. 1. Block diagram of the estimation algorithm with FIR comb filters. 
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The FIR comb filters [10] consist of second-order modules that eliminate the dc 
component and harmonic frequencies and have unity gain at the fundamental frequency. The 
complete filter is realized as a cascade of all these modules. The second-order section that 
rejects the dc component and the frequency fS/2 (fS is the sampling frequency) and has a unity 
gain at the frequency of the kth harmonics fk = kf1 is given by the following transfer function:  
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where the gain ( ) ( ) ( ) kiMiTiTkzzT kki ≠=−=+− −− ,,...,3,2,1,coscos2cos21 11

21 ωωω , is used to 

adjust the gain for the kth harmonic. [ ]12/ ffM S=  is the maximum integer part of fS/2f1, 
which is equal to the number of sections in the cascade. The transfer function of the filter for 
the kth harmonic is given as: 
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The filter given by the transfer function (4) has a non-controlled phase shift at the 

fundamental frequency. In some applications, an extra phase shift of angle π/2 has to be 
implemented (for example, in reactive power measurement). That can be done by an adaptive 
phase shifter [10]. The proposed estimation algorithm is simple because it used closed-form 
solutions for calculating filter coefficients. The number of sections in the cascade and data 
window lengths can also be changed during measurement, in dependence on the frequency 
changes. 
 It can be noticed that filters have nonunity gains at frequencies other than the nominal 
power system frequency. Hence, filter response adaptation during the estimation process is 
necessary to provide unity gain. In addition, this DFT modification with the FIR filter gives 
suppression of all signal harmonics which cause the leakage effect, but the FIR filter is 
adaptive, because its coefficients depend on the estimation of the actual frequency, and the 
accuracy of this algorithm depends on the accuracy of frequency estimation. 
 The process of estimating the frequency of multi-sinewave signals from a finite number of 
noisy discrete-time measurements, is an important task from both the theoretical and practical 
point of view. The problem has been the focus of research for quite some time and still is an 
active research area to date [11-15], since it is used in a wide range of applications in many 
fields such as control theory, relaying protection, intelligent instrumentation of power 
systems, signal processing, digital communications, distribution automation, biomedical 
engineering, radar applications, radio frequency, instrumentation and measurement, to name 
just a few. A list of several algorithms is reported: adaptive notch filter, time-frequency 
representation-based method, phase locked loop based method, eigensubspace tracking 
estimation, extended Kalman filter frequency estimation, internal model based method. The 
requirements on the frequency estimator, and so the choice of the solution, vary with the 
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application, but typical issues are: accuracy, processing speed or complexity, and ability to 
handle multiple signals. 

By differentiating the kth harmonic component of the signal (1) after filtering (Fig. 1), we 
get: 
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Here, tn is the time moment in which the differentiation of the input analogue signal is 

done, and it is completely arbitrary (irregularly spaced samples). Fig. 2 shows a proposed 
scheme to obtain the first and second-order derivate in an oversampling system. 

 

 
 

Fig. 2. Proposed system for signal reconstruction based on first and second-order differentiators in the 
oversampling system. 

 
Based on the obtained differential value-samples, the unknown signal parameters can be 

calculated as:  
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As shown in Fig. 1, a sensor picks up the signal of interest, which will be conditioned via a 

signal-conditioning circuit (amplifier) and band limited by an anti-aliasing filter. Then, the 
conditioned analog signal x(t) is added with dithering noise, so that the combined signal can 
be fed to an ADC unit at an oversampling rate of ssL Lff =  Hz (samples/s), where sf  and L  
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denote the minimum sampling rate (Nyquist sampling rate) and the oversampling factor, 
respectively. Each digital sample [ ]nxk

 is encoded using qN  bits. The first and second-order 
derivates of the digitized signal are then obtained using the first and second-order FIR digital 
differentiators at the oversampling rate [16], which have a transfer functions designed as 

( )zH D1  and ( )zH D2 . After decimating the obtained first- and second-order derivative 
signals [ ]ny k1  and [ ]ny k2  by a factor L, we finally achieve the desired first- and second-order 
derivate signals [ ]my k1  and [ ]my k2  at the Nyquist rate of sf Hz. Since the impact of the digital 
differentiator on the oversampling rate reshapes the spectrum of quantization noise, 
eventually resulting in its being pushed toward the high-frequency range and filtered at the 
same time, we can expect an improvement of signal-to-quantization-noise ratio (SQNR) for 
the estimated derivative signal after decimation. 

The anti-aliasing filter (Fig. 1) has a bandwidth of 2/sf  Hz. Although adding the dithering 
noise raises the average spectral noise floor of the original input signal, the dithering process 
forces the quantized error to lose its coherence with the original input signal so that the 
spectrum of the quantization noise becomes white and flat. Hence the oversampling technique 
can be applied effectively to compensate for the degraded SQNR and continue to improve the 
SQNR by further increasing the sampling rate. The typical amount of random wideband 
dithering noise, which can be provided by a noise diode or noise generator ICs usually has a 
root-mean-square (RMS) level equivalent to 1/3 − to 1-least significant bit (LSB) voltage 
level. An ideal frequency response of the kth-order differentiator ( )zHkD

 is designated as: 
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where sLc ff /2πω =  is the continuous frequency of digital signal in radians, while 

( ) Lff sLs //2/2max ππω == is the maximum normalized digital frequency of the sensor 
signal in radians. In the oversampling system, πω <<max , and ( )cj

kD eH ω  is normalized to have 
a unit gain at maxω . With the ideal frequency domain specification, the kth-order differentiator 
can be designed and implemented. The effective method for designing a FIR digital 
differentiator using the Fourier transform design, properties of FIR differentiator coefficient, 
is proposed in [16], and it is out of the scope of this paper. 

Due to the presence of error in determining the samples xk(tn), y1k(tn), and y2k(tn) in the 
practical applications of the proposed algorithm we need to have the best estimate of the given 
values, according to the criterion assumed. This can be done by means of recalculation of the 
values xk(tn), y1k(tn), and y2k(tn), through N passages, (N is arbitrary). In this process we form 
the series xk(tn)i, y1k(tn)i, and y2k(tn)i (i = 1,...,N, k = 1,2,…, M), as given in the proposed 
algorithm. To achieve that this procedure be efficient, it is necessary to samples xk(tn), y1k(tn), 
and y2k(tn) be taken at the same points in time, through N passages, compared to the detected 
period of the processed input signal. The random errors Δn of measurements are unbiased, 
E(Δi) = 0 have the same variance var(Δi) = σ2, and are not mutually correlated. Under these 
assumptions, we can use the weighted average procedure for decreasing random errors in 
determination of observed values. The weighted average is used for measurements that are not 
correlated and have a varying degree of accuracy. The averages ( ) ( ) ( )nknknk tytytx 21 ˆ,ˆ,ˆ  of the 
values xk(tn), y1k(tn), and y2k(tn) are calculated as:  
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where 

iyiyix kkk
www

21
,, are non-negative weights of series xk(tn), y1k(tn), and y2k(tn). The 

kkk yyx nnn
21

,, defines the numbers of different values in above series through N passages. The 
value of N will depend on the required speed of processing – the higher the N, the more 
precise the estimation of the value. After using the procedure described above to perform the 
estimation of the value of samples ( ) ( ) ( )nknknk tytytx 21 ˆ,ˆ,ˆ , it is necessary to perform a re-
calculation of the unknown amplitudes and phases for all the harmonic components of the 
processed band-limited periodic signal. According to the Fourier coefficients determined in 
this way, it is possible to perform the calculation of the effective value of the signal, the active 
power and energy. When this is done, it is possible to start again the sampling of the 
processed signal.  
 
3. Simulation results 
 

The algorithm proposed in this paper is tested by means of the input data obtained through 
computer simulation. It was performed as the first and second derivation of a multi-sine signal 
with an 8-bit ADC resolution and an oversampling factor L of 256 and 

( )LSBd 3/1=σ (dithering noise is added to the analog signal before oversampling). In this way 
it oversampled the multi-sine signal with 4096⋅L samples.  

First, an input-frequency modulated sinusoidal test signal (step frequency change from 50 
to 49.8 Hz at t = 0.06 s) was processed. White noise with SNR = 60 dB was added to the 
sinusoidal signal. The test has been developed with a distorted source voltage (10% third, 5% 
fifth, 3% seventh and 2% eleventh harmonics). The phase angles of each harmonic are 
randomly chosen. The results obtained confirm a good dynamic response of the algorithm for 
the frequency step change and accuracy. The proposed algorithm is capable of adaptively 
tracking time variations of the characteristics of the power signal over time. It is observed that 
apart from a brief transient at the time of the step change, the algorithm effectively follows the 
variations in frequency. As shown in Fig. 3, we have obtained a technique that provides 
accurate frequency estimation with an error in the range of 0.001 Hz. 

The ability of the frequency estimation over a wide range of frequency changes is 
investigated using sinusoidal test signals with the following time dependence 
( ) ( )ttf π10sin5.050+=  as shown in Fig. 4. Good dynamic responses can be noticed. 

Considering that the case simulates extreme conditions in a power system, the error can be 
accepted by most applications. 
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         Fig. 3. Estimation for f = 50 Hz for t < 0.06 s                 Fig. 4. Estimation for ( ) ( )ttf π10sin5.050 +=  
      and f = 49.8 Hz for t > 0.06 s with SNR = 60 dB                with SNR=60 dB with presence of harmonics. 
                 and with presence of harmonics. 
 

The effect of noise presence in the signal was studied by estimating the frequency and 
magnitude of signals that contain noise. A sinusoidal 50-Hz input test signal with 
superimposed additive white centred Gaussian noise was used as input for the test. The 
random noise was selected to obtain a prescribed value of the SNR, which is defined as SNR 
= ( )σ2/log20 A , where A is the magnitude of the signal fundamental harmonics, and σ is the 
noise standard deviation. Fig. 5 shows the maximum errors observed in frequency and 
harmonic magnitude estimates when input signals of 30, 50, and 70 Hz having SNRs of 40, 
50, 60, and 70 dB were used. It should be noted that, in practice, the SNR of the voltage 
signal obtained from a power system ranges between 50 and 70 dB. At this level of noise, 
very little error is expected with the proposed technique, as depicted in Fig. 5. 
 

a)                                                                                        b) 
 

  
 

c)                                                                                        d)  
 

  
 

Fig. 5. Maximum estimations of errors for noisy input signals: 
a) frequency; b) 1st harmonic; c) 3rd harmonic; d) 5th harmonic. 
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Additional testing of the proposed algorithm was carried out by simulation in the program 
package Matlab and SIMULINK. Standard sigma-delta ADC with an effective resolution of 
24 bit was used as ADC, and sampling rate fS = 1 kHz. During the simulation, the parameters 
of the input signal correspond to the values given in Table 1. In the course of the simulation 
conducted in this way, the output PSD (Power Spectral Density) of the ideal, thermal noise 
affected and clock jitter affected signal was in the range of −100 to −170 dB for the signal-to-
noise distortion ratio (SNDR) ranging between 55 dB and 76 dB. 

Table 1 shows the comparison of the detection errors of the proposed estimation algorithm, 
FFT and continuous wavelet transformation (CWT) [17]. The presented results confirm that the 
fundamental frequency estimated by the proposed detection algorithm is very accurate. It can be seen 
that the accuracy of the proposed algorithm is within the limits that are attained in processing 
a signal of this form, in [18], [19], and better then the one presented in [17]. The proposed 
algorithm is more accurate then FFT for harmonic frequencies with decimal place. 
 

Table 1. Comparison of simulation results by the proposed reconstruction algorithm, FFT and CWT. 
 

 
 
 

Proposed reconstruction  
algorithm 

 

 
FFT (sampling rate = 25 

kHz; 
 

data length = 25000; time 
period = 1 s) 

 

 
 
 

CWT 

Harmonic 
[Hz] 

 Amplitude 
[V] 

 
Amp.error 

[%] 
 

 
Freq.error 

[%] 

 
Amp.error 

[%] 
 

 
Freq.error 

[%] 

 
Amp.error 

[%] 
 

 
Freq.error 

[%] 

49.2 311 0.008 0.009 3.12 0.41 0.02 0.02 
102 280 0.008 0.006 0.04 0 0.03 0.04 

149.5 248 0.003 0.005 18.23 0.33 0.05 0.03 
249 217 0.005 0.006 0 0 0.15 0.09 
362 186 0.008 0.004 0 0 0.01 0.03 
442 155 0.01 0.01 0 0 0.01 0.03 
540 155 0.01 0.01 0 0 0.22 0.08 
640 124 0.02 0.02 0 0 0.21 0.01 
770 93 0.01 0.01 0.03 0 0.01 0.02 
902 62 0.02 0.03 0.02 0 0.09 0.06 

 
4. Conclusion 
 

The estimation procedure proposed in this paper is a new algorithm for estimation of the 
frequency and signal parameters. The derived analytical expression opens the possibility to 
perform calculations with a low numeric error. The proposed algorithm is able to estimate the 
signal parameters simultaneously, supposing the time-varying frequency. Based on the 
identified parameters of the AC signals, we can establish all the relevant values in electric 
utilities (energy, power, RMS values). The measurement uncertainty is a function of the error 
in synchronization with the  fundamental frequency of the processing signal (because of the 
non-stationary nature of the jitter-related noise and white Gaussian noise), and the error that 
occurs in determining the values of the samples of the processed signal. The simulation results 
show that the proposed algorithm can offer satisfactory precision in reconstruction of periodic 
signals in a real environment. 
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